skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kölbel, Johanna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Measuring terahertz waveforms in terahertz spectroscopy often relies on electro-optic sampling employing a ZnTe crystal. Although the nonlinearities in such zincblende semiconductors induced by intense terahertz pulses have been studied at optical frequencies, a quantitative study of nonlinearities in the terahertz regime has not been reported. In this work, we investigate the nonlinear response of ZnTe in the terahertz frequency region utilizing time-resolved terahertz-pump terahertz-probe spectroscopy. We find that the interaction of two co-propagating terahertz pulses in ZnTe leads to a nonlinear polarization change which modifies the electro-optic response of the medium at terahertz frequencies. We present a model for this polarization that showcases the second-order nonlinear behavior. We also determine the magnitude of the third-order susceptibility in ZnTe at terahertz frequencies,χ(3)THz). These results clarify the interactions in ZnTe at terahertz frequencies, with implications for measurements of intense terahertz fields using electro-optic sampling. 
    more » « less
  2. We report a characterization of the spatial resolution of terahertz (THz) apertureless near-field imaging of metal lines deeply buried beneath a silicon dioxide layer. We find a good resolution for edge contrast, even in the case where the capping layer is considerably thicker than the tip radius. We find that contrast and resolution depend on demodulation frequency, thickness of the capping layer, and radius of the tip. Furthermore, we observe a distinct dependence of the contrast on the direction of the incoming radiation, in both experiments and simulations. Characterization of buried features can be a valuable tool in non-contact failure analysis of semiconductor devices. 
    more » « less
  3. Abstract Wireless systems are facing increasing pressure due to the growing demand for data transmission. One potential solution to this problem is to shift communication frequencies toward the terahertz (THz) spectrum. However, this requires the development of new components that can efficiently process signals at these high frequencies and transmit them via highly directional beams. In this study, a novel approach is proposed to achieving efficient THz signal processing by combining two existing technologies: photonic crystals and leaky‐wave antennas. Incorporating a 2D photonic crystal inside a leaky‐wave waveguide allows to manipulate the wave vector of the guided wave in unique ways, which in turn impacts the far‐field radiation pattern emitted through the leaky‐wave aperture. The device fabrication uses 3D printing of alumina and allows for convenient and scalable manufacturing. Through numerical simulations and experiments, free‐space data transmission at rates of few hundred Mbps at a carrier frequency of 101.2 GHz is demonstrated. The findings illustrate the feasibility of photonic crystal‐based leaky‐wave antennas and lay the groundwork for the development of compact and high‐performance components for THz wireless communication systems. 
    more » « less